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Abstract

A hybrid method that combines the finite element method (FEM)

and the boundary element method (BEM) is developed to analyze elec-

tromagnetic scattering from arbitrarily shaped material cylinders. By

this method, the material cylinder is first enclosed by a fictitious

boundary. Maxwell's equations are then solved by FEM inside and by

BEM outside the boundary. Electromagnetic scattering from several

arbitrarily shaped material cylinders is computed and compared with

results obtained by other numerical techniques.

1. Introduction

The problem of electromagnetic scattering determination from an arbitrarily shaped material cylin-

der is considered in this paper. Electromagnetic scattering from an inhomogeneous material cylinder

can be determined by two basic approaches--an integral equation and a differential equation.

In the integral equation approach, a surface integral equation or a volume integral equation may be

used. In the surface integral equation formulation, conducting surfaces of a scatterer are replaced by

equivalent surface electric currents, whereas material surfaces are replaced by both equivalent surface

electric and magnetic currents. Coupled integral equations are then formed by application of appropriate

boundary conditions to the different field components that are produced by the equivalent currents.

These coupled integral equations are solved by the method of moments for the unknown equivalent cur-

rents. Arvas and Sarkar (ref. 1) have analyzed radar cross sections of various two-dimensional struc-

tures with the surface integral equation approach.

For a cylinder consisting of inhomogeneous material, the surface integral equation approach does
not correctly model the inhomogeneity of the material cylinder. In such cases the volume integral equa-

tion formulation is then used to accurately model the inhomogeneous material cylinder. In the volume

integral equation formulation, the material cylinder is divided into unit cells. These unit cells may be

rectangular bricks or tetrahedral shapes and are small enough so that the field intensity is nearly uniform

within each cell. The material cylinder is then assumed to be replaced by an equivalent polarization cur-

rent flowing in these unit cells. The coupled integral equations, which are formed by application of

appropriate boundary conditions to the field produced from the equivalent currents, are then solved by

the method of moments. Using the polarization current concept, Richmond (ref. 2) determined scattered

field patterns of dielectric cylinders of arbitrary cross-sectional shape. The equivalent current concept

has also been used by Sarkar and Arvas (ref. 3) and by Schaubert, Wilton, and Glisson (ref. 4) to ana-

lyze electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. However, the

method involves the solution of a fully dense matrix equation, which may require prohibitively large

computer memory and long computation time.

In the differential equation approach, the volume of the inhomogeneous scatterer is discretized, and

Maxwell's equations in differential equation form are solved. Some advantages of the differential equa-

tion approach over the integral equation approach are: (1) a method more convenient for handling com-

plex inhomogeneous scatterers, (2) a method that results in sparse matrix equations, and (3) a method

better suited for closed-region problems. However, for open-region problems in electromagnetics, such

as radiation and scattering, the volume must be properly truncated with an artificial or fictitious bound-

ary with proper absorbing boundary conditions. The accuracy of results obtained with an artificial

boundary with absorbing boundary conditions depends upon boundary locations as well as the order of

the boundary conditions.

An alternative approach (known as the hybrid approach) presented in this paper retains the advan-

tages of both differential equation and integral equation approaches. The general procedure for a hybrid

technique requires that the scatterer be enclosed by an artificial boundary. Maxwell' s equations are then



solvedby adifferentialequationapproachsuchasthefiniteelementmethod(FEM)insidetheartificial
boundaryandby an integralequationapproachin discretized form such as the boundary element

method (BEM) outside the artificial boundary. Although use of BEM on and outside the artificial

boundary results in a full dense matrix, convergence of an approximate solution to the exact solution is

guaranteed without a change in the location of the artificial boundary.

The remainder of the paper is organized as follows. Section 3 contains basic formulation of the

problem for FEM and BEM. Scattering amplitudes of a few sample problems are computed by the

present technique in section 4. Also in section 4, results obtained by the present method are compared

with those obtained by other analytical techniques. The paper is concluded in section 5 with comments

on the future scope and extension of the present work.
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(/, J)th element of FEM matrix for eth subdomain

cylinder radius; triangle side length

finite element matrix

boundary circle radius; triangle base length

fictitious boundary curve

sparse matrix

(J, p)th element of matrix [D]

amplitude of incident electric field

Z-axis component of total electric field

incident electric field vector

time convention

frequency, Hz

E or H scattered far field

free-space Green' s function, where (.) represents appropriate argument

square matrix of order P x P

(p, q)th element of matrix [G]

inverse of matrix [G]

square matrix of order P × P

(p, q)th element of matrix [H]

Hankel function of first order and second kind

Hankel function of zero order and second kind

Z-axis component of total magnetic field

amplitude of incident magnetic field

incident magnetic field vector

integers

equivalent electric current representing incident field

imaginary number equal to ,f_

propagation constant in free space

integers
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P
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Qp(q)

q
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[U]c

%
e

WI

(Xl, Yl), 1

(x2' Y2)'
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[F]

[F]c
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e(x, y)

er(X, Y)

E o

rl

Op

g(x, y)

_l,r(X, Y)

gO

(P,*)

(p', _')

152D

[_']c

Yq

t_in

unit normal vector of curve C drawn outward

unit normal vector of curve C drawn inward

number of nodal points on curve C

integer for pth nodal point

piecewise distribution along r ! direction

integer for qth nodal point

unit vector
' e

testing function equivalent to W I

column matrix with nodal amplitudes of normal derivative on curve C

amplitude of normal derivative of _gt on curve C

expansion function for Ith node over eth triangular subdomain

coordinates of three vertices of triangle

variables of rectangular coordinates

unit vector along Z-axis

equal to gr(X, y), er(X, y), respectively, for TM case; equal to er(X, y), _tr(X, y),

respectively, for TE case

column matrix for nodal amplitude

column matrix for nodal amplitude on curve C

amplitude of _t at Ith node

length of linear segment between p and p + 1 nodes on curve C

length of linear segment between p and p - 1 nodes on curve C

Kronecker delta function

E0er(X, Y)

relative permittivity at (x, y)

permittivity of free space

variable along linear segments of curve C

angle between two consecutive linear segments of curve C, deg

gOgr (X, Y)

relative permeability at (x, y)

permeability of free space

variables of cylindrical coordinate system

source coordinate

radar scattering width

column matrix with nodal amplitudes of incident field on curve C

amplitude of incident field at qth node on curve C

incident angle of electromagnetic wave
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_l/in incident electric or magnetic field scalar

_t total electric field E z for TM case; total magnetic field H z for TE case

m angular frequency (2n f), rad/sec

Abbreviations:

in incident

TE transverse electric

TM transverse magnetic

3. Theory

Consider a material cylinder infinite along the Z-axis and of arbitrary cross section as shown in fig-

ure 1. For the purpose of analysis, the scattering structure is divided into regions I and II by contour C.

Region II may consist in general of inhomogeneous material with permeability g(x, y) and permittivity

e(x, y). It may also have embedded metallic strips within the material. Region I is free space with perme-

ability go and permittivity e0 surrounding the cylinder. An incident electromagnetic wave is assumed in

the direction normal to the axis of the cylinder. Both transverse electric (TE) and transverse magnetic

(TM) polarizations are considered, and e jc°t time convention is assumed.

For TM and TE incidence, respectively, the incident field is given by

-> jkoP cos(_ -- _in)

Ein = _l/in = _Eoe

--> JkoP cos({_ - q_in)

Hin = z_/in = zHoe

(1)

where E 0 = H 0 = 1 is the amplitude, t_in is the incident angle, and (p, q_) are the variables of the

cylindrical coordinate system. The total field _gt inside the region bounded by curve C can be deter-
mined from the solution of the source-free scalar wave equation given by

F 1 q 2
V. - V_t I+[%(x, y) J ko_r(x, y)Vt = 0

(2)

In equation (2) O_r(X , y) , Dr(X, y) , and _t are equal to gr(X, y) , er(X, y) , and E z , respectively, for TM

Z-axis excitation and are equal to er(X, y), gr(X, y), and H z , respectively, for TE to Z-axis excitation.
Multiplication of both sides of equation (2) by a testing function T(x, y) and integration over the cross

section of region II yields a weak form of the wave equation (Silvester and Ferrari, ref. 5) as

{i1 2 }I I T V- _r(X ,y)vlgt]+_rkO(x,y)lt/t dx dy : 0

Region II

With the use of vector identity

(3)

{I ]} 1r 1 vv, : rv. vr:v,1 +vr. vr:v,]
V" OCr(X, y) Lar(X, y) _ L%(x,y)

(4)

and the divergence theorem, equation (3) can be written as

{ ,11  O r'X'}• dx dy = $aTVlllt, h dc
Region II C

where h is a unit vector drawn outwardly to the curve C as shown in figure 1.

(5)
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To construct an approximate solution of equation (5) by FEM, region II is approximated by a union

of triangles as shown in figure 2(a). On the eth triangle _t t is represented by a linear combination of
e

functions Wl(x, y) as

3
I

e e I_]! t = FIWI(X, y) (on eth triangle)

I=1

e

_t t = 0 (otherwise)

(6)

where

e

Wl(X, Y) iJ-1
lxly 

[1 x y] x 2 I_Y2 21

x3 y I_ 31

and the Kronecker delta function is defined as _lJ = 0 for I ¢ J and fiH = 1 for I = J. The ampli-

tudes F 1, 1-"2, and F 3 are the unknown values of _t t at the three vertices of the eth triangle having coordi-
e

nates (x 1, Yl), (x2, Y2), and (x 3, Y3), respectively. By Galerkin's method with T(x, y) = Wl(X, y) and

J = 1, 2, and 3, the left side of equation (5) over the eth triangle can be written as

3{ VFI_w eq2 e e}ZFI VWj. [_CXr(X, y) I I -- ko_r(X' Y)WjWI dx dy
1=1 e

(J = 1, 2, 3) (7)

The previous expression can be written in a matrix form as

I11A2A II21 A22 A231 r2

;1 A32 A;31

(8)

where

e =ff{ VI 1 Wle I 2 e e}AIj vwej • - r(X ' y) - ko_r(X, y)WjW 1 dx dy
e

(9)

Now consider a union of two triangles as shown in figure 2(b); an expression corresponding to

equation (8) for the union of two triangles can be written as

e e e
All A12 A13 0

e e e

A21 (A22 + Af5) (A23 + Af6 ) Afz

e e e
A31 (A32 +af5 ) (A33 +Af6) Af4

0 Af5 Af6 0

rll

F21

r3[
i
J

r4!

(10)

where Afj are determined from equation (9) with superscript e replaced by superscriptfand the integra-

tion performed over the f triangle. An appropriate alignment of common edges, as indicated in



figure 2(b), is required to assure the correct combination of terms in the matrix equation (10). To ensure

continuity of fields across the common edge, F 6 = F 3 and F 5 = F 2 were enforced in the derivation of

equation (10). With an assembled mesh of all triangles over the surface bounded by curve C, the left

side of equation (5) can be written as

[B][F] (11)

e

where the elements of the matrix [B] are obtained from Amn , [F] is the column matrix with elements
given by the values of x_t at the vertices of triangular elements, m = 1, 2, 3 ..... N, n = 1, 2, 3 ..... N, and
N is the total number of nodes.

To evaluate the contour integration on the right side of equation (5), the normal derivative of Wt

over curve C is required. To determine the normal derivative of x_t on curve C, the following procedure
is used.

The boundary curve C is discretized into linear segments as shown in figure 3 and the normal deriv-

ative of the function _t on the curve is written as

P

VVt. h = E Up Qp(rl) (12)

p=l

where Up is the unknown amplitude at pth node on curve C. The function ap(lq) varies linearly with r I
over the segment as

_ TI (0_<Ti _< Ap_ 1) [QP(1"I) Ap_ 1

Ap- (1] -Ap_ 1) <T I <Ap)
QP(rl) = Ap (Ap_ 1 --

(13)

The right side of equation (5) can therefore be written as

P

C p=l C

(14)

where the elements of matrix [D] are given by

D@ = _WejQp(rl)drl (15)
C

The unknown amplitude Up is determined as follows. The function _t in region I is obtained by the
solution of the inhomogeneous wave equation

2 . i
V2_/t + koXlt t = -yo)l.tOJ z (16)

subject to essential and natural boundary conditions on curve C. These essential and natural boundary
conditions are the values of the function and its normal derivative on curve C. In equation (16), jt is thez
equivalent current source producing the incident field.
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Toobtainasolution,multiplyequation(16)by G(p, q_; p', _'), where G(.) is the free-space Green's

function for a line source located at (p', _'), and integrate over region I, which gives

I I (W21l/t-4- k2111t)G(.)dx dy = --j03_O I I J_G(.) dx dy

Region I Region I

(17)

From the scalar Green's theorem

I I [G(.)V2%[lt-lgtV2G(.)] dx dy= _G(.)Vlg,. n 1 dc -_lgtVG(.)In 1 dc

Region I C C

where the unit normal vector h 1 is shown in figure 1. Equation (17) can then be written as

(18)

S I vttv2c(.)+ k 6(.)3 dx + = -jo, 0 I a(') dx dy
Region I Region I

+ _lgtVG. n 1 dc-_Vlgt.nlG de
C C

(19)

Because [V2G(.) + k2G(.)] = - 8(p - p')8(_ - q_')/p,

h 1 = -h, equation (19) can be written as

jmg I IJ_G(.) dx dy = lqti,

Region I

and

Vt(P, 0) = %.(P, 0) - _Vvt- aG(.)drl + _%VG(.) • _ drl
C C

(20)

The free-space Green's function used in the previous equations is given by

1..(2)(_ I-> P'I)a(.) = (,' oip (21)

^Jk0--(2)(, I+ P'I) (22)VG(.) = r--_-n 1 _;c01p-

where H(02)(.) and H{2)(.) are the Hankel functions of the second kind of zero and first order, respec-
tively, and } is a unit vector along _ - _'. The function _t on the curve in figure 3 can now be repre-

sented by

P

_t = Z FpQp (ri) (23)

p=l

where Fp is the unknown amplitude of _t at the pth node on curve C. Substitution of equations (12)

and (21)-(23) into equation (20) yields

P

-)# ^

JkozFpIH_2)(kolpq-pl)Qp(_)r .hd1" IFqSqq = Yq+T

p=l C

P

+JZUpIHg2'(koPq-P')Qp(TI) d'FI

p=l C

(24)
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where "l_q is the value of incident field at the qth node on curve C. Equation (24) can be written in
matrix form as

Ii1 121II21H22 "'" n..2PI F2 "1_2

P1 Hp2 "'" HppJ

r 11c121
where

and

Jko 1"__(2)f, I-> P [)Qp(TI) _ _. dT I _)qqHpq = "_ J/-/, _tc01pq - -_' " + (26)
C

j (2) 2

Gpq = _n 0 [ko[Pq-p'l)ap(l'l)d'f] (27)

c

The normal derivative of _t is then obtained by solution of equation (25) for [ U] c in terms of [F]c to

get

[ U]c = [G]-I[H][F]c - [G]-I['F]C (28)

where [U] c and [F] c refer to unknown nodal amplitudes on curve C. With substitution of equa-

tion (28) into equation (14), the rightside of equation (5) reduces to

TV_t- h dc = [D][G]-I[H][F]C -[D][G]-I[_']C

c

From equations (11) and (29), equation (5) can be written in matrix form as

[B][F] - [D][G]-I[HI[F]c = [D][a]-l[r]c

(29)

(30)

and solved for [F], which also includes additional [F] c terms. Then [U] c is determined by substitu-

tion of [F] c into equation (28). The scattered far field in the q_ direction is then determined by the last

two terms of equation (24) with pq = p and the asymptotic evaluations of the Hankel functions as
p ---_ oo

fS --

P

ko(_\_---_Opj2j)1/2e -Jk°P_ I'pjf Qp (rl)e jk°p' c°s(_-cp') drl
p=l C

P

+ 4_,_'_-_OP)j{"2j -_l/2e-jk0p Z Up_ Qp('q)e jk°p' c°s(q°- q°')drl (31)
p=, C
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where (p', q0") is a function of 11. For TM andTE incidence, respectively, the radar cross section is then
obtained from

s2t
Isl

O2D = limitp _ oo2re p _----25-
E 0

f 2Isl
O2D = limitp _ oo2re p

H 0

(32)

4. Numerical Results

In this section, numerical results for the scattering width of various 2-D material cylinders are pre-

sented. To solve equation (30), the matrices [B], [D], [G], and [H] must be determined. Matrices
[B] and [D] are sparse matrices, and their elements are determined by equations (9) and (15), respec-

tively. Matrices [H] and [G] are dense matrices, and their elements are determined by equations (26)

and (27), respectively. Equations (26) and (27) are evaluated with the use of Gauss quadrature numeri-

cal integration. Whenp = q, the integration in equation (26) results in Hqq = (Oq/(2_)), where Oq is
the internal angle at the qth node shown in figure 3. The column matrix IF], which is obtained after the

solution of equation (30), is used in equation (28) to determine [U] C. From known [U] and [U] C

on curve C, the scattered far field, and hence, the scattering width are determined by equations (31)
and (32).

To validate the computer code, the bistatic scattering width of a perfectly conducting cylinder of

radius 1.03-, when excited by a TM-polarized plane wave, is calculated by the present formulation and

compared with the calculated results given in reference 1. (See fig. 4.) Results of the two calculation

methods are in good agreement. For calculations by the present method, the circular cylinder is assumed

to be enclosed by an artificial circle with radius equal to 1.23-. The region enclosed by the artificial cir-

cle is analyzed by the finite element method, and the region outside the circle is analyzed by the bound-

ary element method. For the BEM the circle is divided into 76 points. Selection of the location of the

artificial boundary around the cylinder is arbitrary. For the conducting cylinder, when the location of the

artificial boundary coincides with the object boundary, the problem can be solved by the use of only

BEM. For validation of the FEM formulation, the location of the artificial boundary was selected at 1.23-

radius to provide a minimum one-cell-thick FEM region. If the artificial boundary is moved farther

away from the object boundary, the computational area is unnecessarily increased. The circumference

of the artificial boundary was divided into 76 linear segments so that the length of each small segment

was less than 0.13,. In figure 5 the bistatic scattering width of the circular cylinder, when excited by a

TE-polarized plane wave, is shown and compared with earlier published results. (See ref. 1.)

To check if dielectric and magnetic materials are properly handled by the present method, the
bistatic scattering width of a material-coated circular cylinder is calculated for both TE and TM excita-

tions and presented in figures 6-8 along with earlier published results. (See ref. 1.) Overall earlier
results and the present method results are in good agreement. For the results presented in figures 6-8,

the artificial circular boundary was taken at radius b. The artificial boundary was divided into 90 seg-

ments. Any further increase in the discretization of the artificial boundary C resulted in insignificant

changes in the results presented in figures 6-8.

In general, the artificial boundary curve C enclosing the cylindrical scattering structure may be of

any shape. To check this aspect, the bistatic scattering widths of cylinders with triangular cross sections,

as shown in figure 9(a), are considered. The triangular cylinders are enclosed by the following bound-

aries: (1) circular boundary (fig. 9(a)), (2) elliptical boundary (fig. 9(b)), (3) conformal boundary with

9



blended comers (fig. 9(c)), and (4) conformal boundary with sharp comers (fig. 9(d)). The bistatic scat-

tering widths, which were obtained for the four examples, are shown in figure 10 for comparison with

earlier results published by Peterson and Castillo in reference 6. Results presented in figure 10 are in

good agreement with each other. The results presented in figure 9 show advantages from the artificial

boundary selected to be as close as possible to the outer boundary of the cylinder. This reduces the com-

putational surface and, hence, the number of unknowns. For the examples considered, the artificial

boundary selected in figure 9(d) is the optimum because it has the least number of unknowns when

compared with the artificial boundaries considered in figures 9(a)-9(c).

Other geometries and their results are shown in figures 11-13. The geometries that were considered

included the conducting strip shown in figure l l(a), the microstrip transmission line shown in

figure 12(a), and the conducting cylinder of von Karman shape shown in figure 13(a). For the calcula-

tion of the scattering widths of a conducting strip, a microstrip transmission line, and a conducting cyl-

inder of von Karman shape, the artificial boundaries were selected to be elliptical enclosures of the outer

boundaries of the structures as shown in figures l l(a), 12(a), and 13(a), respectively. The scattering

widths of these structures calculated by the present method are presented along with earlier published

results (ref. 1) in figures ll(b), ll(c), 12(b), and 13(b). The results of all geometries are in good

agreement.

5. Conclusion

A hybrid technique that combines the finite element method and boundary element method has been

used to determine backscattered fields from arbitrarily shaped material cylinders. Validity of the com-

puter code developed with the present hybrid technique has been demonstrated with various arbitrarily

shaped material cylinders. Although use of the boundary element method in the present hybrid tech-

nique leads to a partly sparse and partly dense matrix, the present method is guaranteed to converge irre-

spective of the shape of the terminating or artificial boundary enclosing the arbitrarily shaped material

cylinder. The present hybrid technique can be applied to study the transmission line characteristic of

cylindrical strip lines.

NASA Langley Research Center
Hampton, VA 23681-0001
February 26, 1996
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(a) Typicaleth andfth triangles.
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1

(b) Geometry of union of two triangles.

Figure 2. Region II discretized into triangular subdomains.
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Figure 4. Bistatic scattering width of conducting circular cylinder excited by TM-polarized plane wave.
tx = 1.0X and ¢in = 180 °.
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Figure 5. Bistatic scattering width of conducting circular cylinder excited by TE-polarized plane wave.
o_= 1.0)_ and q_in= 180 °.
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Figure 6. Bistatic scattering width of coated conducting circular cylinder excited by TM-polarized

plane wave. a = 1.09_; b = 1.5_; I_r = 2.0; gr = 1.0; and _in = 180°.
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Figure 7. Bistatic scattering width of coated conducting circular cylinder excited by TE-polarized plane

wave. a = 1.0)_; b = 1.5)_; Er = 2.0; _r = 1.0; and q_in = 180 °.
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Figure 8. Bistatic scattering width of coated conducting circular cylinder excited by TE-polarized plane

wave. a = 1.0_,; b = 1.5_,; Er = 2.0; _r = 2.0; and t_in = 180 °.
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Y

Z

Conducting triangle b

(a) Artificial circular boundary with radius 1.29_O.

Figure 9. Isosceles triangular metallic cylinder with a = 1.85)_ 0 and b = 1.404X 0. FEM method is used

inside circular boundary and BEM method is used outside circular boundary.
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Conductingtriangle
X

(b) Artificial elliptical boundary with major axis 1.3X 0 and minor axis 1.19_0.

Figure 9. Continued.
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Y

Conducting triangle

(c) Artificial conformal boundary with blended comers 3 to 4 cells away from triangle.

Figure 9. Continued.
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Y

(d) Artificial conformal boundary with sharp comers 1 to 3 cells away from triangle.

Figure 9. Concluded.
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Figure 10. Bistatic scattering cross section of isosceles triangular cylinder shown in figure 9 and

excited by TM-polarized plane wave with angle of incidence t_in = 180 °. Computed boundaries as

shown in figure 9.
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Y

Conducting strip

(a) Geometry and triangular mesh.

Figure 11. Conducting strip (infinite along Z-axis) with artificial elliptical boundary with major axis
1.3X o and minor axis 0.3_.o.
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(b) Monostatic scattering width of conducting strip excited by TM-polarized plane wave.

Figure 11. Continued.
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(c) Monostatic scattering width of conducting strip excited by TE-polarized plane wave.

Figure 11. Concluded.
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Y

Dielectric slab

X

(a) Geometry and triangular mesh.

Figure 12. Microstrip transmission line with artificial elliptical boundary with major axis 0.6_. o and

minor axis 0.39_o.
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(b) Monostatic scattering width of microstrip transmission line excited by TM-polarized plane wave.

W 1 = 0.9)_o; W 2 = 0.15)_o; t 1 = 0.02)_o; t 2 = 0.1)_o; and t 3 = 0.05)_ 0.

Figure 12. Concluded.

28



Y

X

(a) Geometry and triangular mesh.

Figure 13. Conducting cylinder of yon Karman shape with conformal artificial boundary.
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(b) Monostatic scattering width of conducting cylinder of von Karman shape excited by TM-polarized

plane wave. L = 2.0)_ 0 and D = L/2.

Figure 13. Concluded.
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